DESIGN AND HISTORY

RETROSPECTIVE

This chapter can in no way substitute for a comprehensive history of design. Instead, it outlines the developments that have shaped the history of industrial design in a number of countries, briefly covering the products, companies, and designers that mark the significant events and their repercussions. Readers seeking greater depth and detail are encouraged to turn to the many standard works on the history of design. These include, for example, John Heskett (1980), Guy Julier (2000), Penny Sparke (1986), Gert Selle (1978, 1987, 1994), John A. Walker (1992), and Jonathan M. Woodham (1997).

The Beginnings of Design

The origins of functionally optimized product design can be traced all the way back to classical antiquity. The writings of the Roman artist, architect, and military engineer Vitruvius (ca. 80-10 B.C.) are among the oldest surviving architectural documents. His comprehensive De architectura libri decem (Ten Books on Architecture) comprised the first handbook of planning and design. In his book, Vitruvius describes the close relationship between theory and practice, saying that an architect has to be interested in art and science, as well as being versed in rhetoric and having a good knowledge of history and philosophy. In chapter three of his first book, Vitruvius names a guiding principle that has found its place in design history: “all buildings must satisfy three criteria: strength (firmitas), functionality (utilitas), and beauty (venustas)” (Bürdek 1997). It could be said that Vitruvius laid out the basic tenets for the concept of functionalism, whose time did not come until the twentieth century, when it was to define modernism in design across the world.

It is actually only since the mid-nineteenth century, the age of the Industrial Revolution, that we can speak of industrial design in the
HENRY COLE, drawings of simple objects for raising children (1849)
modern sense. Increasing divisions of labor meant that the design and manufacture of a product were no longer carried out by one and the same person, as had previously been the case. Over time, this process of specialization has progressed to such an extent that today a designer in a large company is only responsible for one specific part of a product. In the 1970s a reaction to this division of labor led younger designers in particular to attempt to undertake design, production, and marketing as a unified whole.

In the mid-nineteenth century a number of English designers rebelled against the grandiloquent interiors of the Regency style. In Europe the room itself had been steadily losing importance since the Middle Ages, whereas the furniture in the room increasingly became the center of attention. Sigfried Giedion (1987) has vividly described how a medieval room always appeared furnished; it never seemed bare, even when empty of furniture, as it came alive through its proportions, materials, and forms. A trend that treated the furniture as if it were the room itself reached its zenith in the Regency period (approx. 1811–1830). The declining significance of the room as a space was only recognized in the twentieth century, by the architects and designers of the Bauhaus. They responded by designing very simple, reductionist furniture in order to direct attention back to the meaning of the room.

In England, Henry Cole aspired to influence applied design educationally through his modest and short-lived publication, the Journal of Design, which appeared from 1849 to 1852. Cole’s work focused on the practical and functional aspects of design, to which he felt the representative and decorative elements should be secondary. Cole also proposed holding a Great Exhibition in London, where all nations would be given the opportunity to present their manifold products. At the heart of his thought was the idea of “learning to see, seeing by comparing,” which was taken up by the German Werkbund in the twentieth century.

Joseph Paxton won the commission to design the building for the 1851 Great Exhibition in London. His Crystal Palace, which Friemert (1984) refers to as a “glass ark,” was prototypical of the industrialized construction methods of the nineteenth century. The structure was built in just four and a half months, all the parts being manufactured elsewhere and assembled at the site. Furthermore, the building was dismantled several years later and re-erected at a different location (Sembach 1971).
JOSEPH PAXTON, London’s Crystal Palace
(1851)
The first World’s Fairs – among them 1873 in Vienna, 1876 in Philadelphia, and 1889 in Paris (with Gustave Eiffel’s tower) – were gigantic collections of products and expositions of design, where the technical and cultural developments of the age were put on show. It was an era of new materials and technologies: cast iron, steel, and cement were no longer processed in small-scale workshops, as mechanized industrial enterprises replaced older modes of production. Automated looms, steam engines, industrial carpentry, and prefabricated construction methods utterly transformed the conditions of life and work. The social consequences of industrialization were plain to see. A large part of the population fell into poverty and became the proletariat, while the environment was transformed by the advent of mass accommodations and extensive industrial zones. The real fathers of design were contemporaries of this Industrial Revolution: Gottfried Semper, John Ruskin, and William Morris. They, like Henry Cole, reacted against the superficial embellishment of the new industrial products. This reform movement was strongly influenced by John Stuart Mill’s philosophy of utilitarianism, which stated that the moral quality of human acts depended solely on their usefulness (or harm- fulness) to society. This criterion, incidentally, can be traced right through to the present as a determining category in design. Wend Fischer (1971) even saw it as the foundation of rational design: “In considering the nineteenth century we have also learned something about our own century. We recognize ourselves in the efforts of reason to establish the idea of functional design against the arbitrariness of historical formalism, in order for the world of people, their houses, rooms, and utensils to be given a characterful form in which the expression of life can be found.”

German architect Gottfried Semper emigrated in 1849 to seek political asylum in England, where he pushed for the reform of industrial design activities, advocating that the form should be appropriate to the function, the material, and the manufacturing process. Semper worked together with Cole on the Great Exhibition of 1851 and taught at the newly founded drawing school in London. At the turn of the twentieth century Semper’s ideas exerted a strong influence on the German Arts and Crafts movement, which also placed the pure function of the object in the foreground.

John Ruskin, art historian and philosopher, attempted to revitalize medieval production methods in a countermovement to the Industrial Revolution. Craft production, he believed, would make better living
THONET CHAIR NO. 14 (1859)
SINGER SEWING MACHINE (around 1900)
DESK, design: Henry van de Velde (1899)
conditions possible for the workers and represent a counterweight to the aesthetically impoverished world of machines.

William Morris founded Morris, Marshall, Faulkner & Company in 1861 with the aim of reinvigorating the arts and crafts. The British Arts and Crafts movement that formed around Morris worked for social reform and to rejuvenate style. Revoking the division of labor and reuniting design with production, the Arts and Crafts revival movement directed its energies especially against the aesthetic of the machine, but was thwarted by the tumultuous industrial developments of the second half of the nineteenth century.

One typical example from this early phase of design is the Singer sewing machine, whose annual production volume had already surpassed 400,000 by 1879.

This period also saw the development of the bentwood chair by the Thonet brothers, first in Germany, then in Austria. Their method of steaming wood to make it pliable was patented in Vienna, and became the basis for worldwide success. These chairs were already on display at the Great Exhibition of 1851 in London. The principles of standardization (using only a small range of identical components) and mass production meant that a reduced language of form had to be used. The Thonets’ chairs thus embody an important keynote of design – high production volume with reductionist aesthetic – that was to remain ascendant in that form until the 1970s. It is said that fifty million units of Chair No. 14 had been made by 1930, and it is still in production today.

New movements emerged in Europe toward the end of the nineteenth century: Art Nouveau in France, Jugendstil in Germany, the Modern Style in England, and the Secession Style in Austria. What they all shared was an artistic joie de vivre, which was reflected especially in the visual appearance of everyday products.

The leading proponent of this movement, the Belgian Henry van de Velde, designed furniture, implements, and interiors, but the ideas of social reform formulated by William Morris were forgotten. All that the two had in common was the arts and crafts renaissance. Van de Velde was an elitist and an individualist; a combination we shall meet again in the early 1980s in the Memphis movement and “new design.”

In Austria Josef Hoffmann, Josef Olbrich, and Otto Wagner joined together to form the Vienna Secession, establishing a group of artists whose work prominently featured geometric ornaments and a reduced
THE WEISSENHOF SIEDLUNG ESTATE IN STUTTGART
(1927)
living space in a house
residential houses
design: Jacobus J. P. Oud
language of form. In the Vienna Workshops, which were set up at this time, craftsmen designed furniture for the upper middle classes.

From Werkbund to Bauhaus

The German Werkbund was founded in Munich in 1907. It was a society of artists, craftsmen, industrialists, and journalists, who set themselves the goal of improving mass-produced goods through cooperation between industry, the arts, and the craft trades, and by means of education and publicity work. Leading members of the Werkbund at the turn of the twentieth century included Peter Behrens, Theodor Fischer, Herman Muthesius, Bruno Paul, Richard Riemerschmid, and Henry van de Velde. Both leading currents of the time were represented in the Werkbund: industrial and product standardization on the one hand, expression of artistic individuality à la van de Velde on the other. These were, in fact, to be the two decisive tendencies in twentieth-century design.

Werkbund organizations sharing the same central tenets were set up in other countries, too: the Austrian Werkbund in 1910, the Swiss Werkbund in 1913, the Swedish Slöjdföreningen (1910–1917), and the English Design and Industries Association in 1915. The goal they all shared was to popularize a holistic good taste among manufacturers and consumers of products, working educationally in the tradition of Henry Cole.

The high point of the German Werkbund’s work after World War I was an exposition held in 1927 in Stuttgart: the Weissenhof project. Under the leadership of Mies van der Rohe, more than a dozen of the most famous architects of the time – including Le Corbusier, Hans Scharoun, Walter Gropius, Max Taut, Jacobus Johannes Pieter Oud, Hans Poelzig, Peter Behrens, and Mart Stam – were invited to put their new ideas about architecture and design into practice in houses and apartment buildings.

The application of new construction materials made the design of new housing concepts possible, and the intention was to restore significance to the room itself, as mentioned earlier. The Weissenhof project represented an attempt to subject everything – from the house itself right down to the coffee cup – to a fundamental design concept. The apartment as a total work of art was intended on the one hand to propagate new aesthetic models (reduction to the elementary functions, utilitarianism), and on the other to offer affordable furnishings to a broad section of the population. Giedion credits the Dutch architect
TABLE FAN, design: Peter Behrens (before 1912), AEG
JUGENDSTIL TABLE LAMP, design: Peter Behrens (1902)
HIGH-BACKED CHAIR, design: Charles Rennie Macintosh (1904/05)
SIDE TABLE, design: Gerrit T. Rietveld (1922/23)
Oud with being the first to treat the working-class apartment as an artistic challenge. The holistic ideas expressed in the Weissenhof exposition corresponded to the basic ideas of the Bauhaus (see p. 28f.).

In hindsight, Weissenhof represented the first visible expression of the so-called International Style in architecture. But in contrast to the superficial formal manifestations we know, for example, from the satellite towns built round the major conurbations since the 1960s, Weissenhof embodied a well-thought-out, meaningful unity of social conditions using new materials and forms (Kirsch 1987).

In Scotland a group centered on Charles Rennie Mackintosh formed in opposition to Jugendstil. His purist utilitarian forms stood in the tradition of medieval Scottish furniture, as well as demonstrating a severity that was to resurface in constructivism.

Peter Behrens was one of the key pioneers of modern design. Behrens, a German architect and advertising expert, was appointed as artistic adviser to AEG (Allgemeine Elektrizitäts Gesellschaft) in 1906–1907. His responsibilities there included designing buildings and electrical domestic appliances. Because he designed mass products for general consumption, he is regarded as one of the very first industrial designers. The rationale of industrialized manufacturing led him to turn his back on Jugendstil and concentrate on products that were economical to manufacture, simple to operate, and easy to service.

The De Stijl group in the Netherlands formed in 1917. Its most important representatives were Theo van Doesburg, Piet Mondrian, and Gerrit T. Rietveld, all of whom put forward aesthetic and social utopias that were futuristic rather than backward-looking like those of Ruskin and Morris. Doesburg rejected the crafts in favor of the machine, and spent time in Weimar in 1921–1922. His concept of “mechanical aesthetics” was identical to the technical aesthetics of the Russian constructivists.

The reductionist aesthetic of De Stijl was characterized on the two-dimensional plane by simple geometric elements such as circles, squares, and triangles, and in the three-dimensional world by spheres, cubes, and pyramids. This specific use of formal elements created enduring design categories, some of which are still valid today. The Bauhaus and its successors, such as the Ulm School of Design and the New Bauhaus in Chicago, looked to this tradition, especially in their foundation courses. The geometric principles of De Stijl are also reflected in the sparing use of design elements found in Swiss graphic art, and the oft-quoted catch phrase of Dieter Rams, Braun’s long-
serving head designer, that “less design is more design” can also be traced back to the same origins.

In Russia a group known as the constructivists formed after the October Revolution of 1917; the most famous of them were El Lissitzky, Kazimir Malevich, and Vladimir Tatlin. They made social aesthetics their top priority; satisfying the basic needs of the general population was the primary goal of their work. The basic principles of constructivism developed by Tatlin were based on the real material conditions of production: technology, materials, and processes. Style was to be replaced by technology. Malevich drew up guiding principles for the VKhуTeMаs, which was a kind of Russian Bauhaus (see p. 172).

The ideas of this group, too, can be followed through to the present. Design in the 1960s and 1970s, especially, was characterized by themes of social relevance, and, because of the crippling lack of basic consumer goods, the rigid concentration of technology continues to govern design in most countries of the Third World today.

THE BAUHAUS

In 1902 Henry van de Velde established an arts and crafts seminar in Weimar, which was expanded to form the School of Arts and Crafts under his directorship in 1906. The School merged with the Academy of Arts in 1919 to form the Staatliches Bauhaus Weimar, with Walter Gropius as its director. The Bauhaus was to become the flagship for the subsequent development of design (Wingler 1962).

With the exception of sculptor Gerhard Marcks, Gropius appointed only representatives of abstract and cubist painting to teaching posts at the Bauhaus. These included Wassily Kandinsky, Paul Klee, Lyonel Feininger, Oskar Schlemmer, Johannes Itten, Georg Muche, and László Moholy-Nagy.

The unity of design and execution that had existed in the craft trades had been torn asunder by the advance of industrial modes of production during the nineteenth century. Gropius was guided by the idea that the Bauhaus should bring together art and technology to form a new, modern unity. Technology might not need art, but art certainly needed technology, was the motto. This idea was associated with a fundamental social objective, namely to anchor art in society.

The Bauhaus drew on the ideas of the life reform movement of the turn of the twentieth century, which had taken a particular interest in
housing issues. The fustiness of the nineteenth century with its dark furniture in dark rooms was to be blown away, supplanted by new forms of accommodations. The idea was that the modern twentieth-century individual, housed in clear bright rooms, would develop new ways of living (Becher 1990).

THE FOUNDATION COURSE

The foundation course at the Bauhaus represented the heart of the program of basic polytechnical artistic education. Introduced in 1919–1920 by Johannes Itten, it was a significant component of the curriculum and was obligatory for all students. The twin purposes of the course were to encourage students to experiment and to explore their own creative talents, and to teach fundamental design skills through an understanding of an objective science of design.

The foundation course was conducted first by László Moholy-Nagy and later by Josef Albers, whose goals were "inventive building and observational discovery." Methodologically Albers, like Itten, took an inductive approach to design, allowing the students to investigate, explore, and experiment. In this manner, cognitive skills were fostered indirectly. Theory did not lead the way; instead the conclusions drawn from analysis and discussion of experiments were progressively distilled into a generalized "theory of design."

In 1925 the Bauhaus moved from Weimar to a new building in Dessau designed by Gropius, where it stayed for seven years before being forced to close under pressure from the Nazis. A small group of Bauhaus teachers and students kept the school going in 1932–1933 in Berlin under extremely difficult conditions as a private school, which van der Rohe finally closed down in summer 1933.

DEVELOPMENT PHASES

According to Rainer Wick (1982) the Bauhaus period can be divided into three developmental phases:

The Founding Phase 1919–1923

The most important educational element was the foundation course described above. Students who had completed it then chose from a

Today it is impossible to resist the impression that for several years, the industrial spirit of the world blew through Bauhaus. Not only because of the resulting images of newly invented spaces and things, but also because of the self-confidence in the ideal subject of modernity trained there, which is at the same time the object of modernity.

— GERT SELLE, 1997
WALTER GROPIUS, diagram of the structure of instruction at the Bauhaus school, 1922
PRELIMINARY COURSE WITH JOSEF ALBERS, plastic materials exercise with paper, paper folding, around 1927
© Bauhaus Archiv Berlin
number of specialist workshops: printing, pottery, metalwork, mural painting, stained glass, carpentry, stagecraft, weaving, bookbinding, and woodcarving.

Each workshop had two supervisors: a master of form (an artist) and a master craftsman. The intent of this dualism was to promote the students’ manual and artistic skills equally, but in practice it soon became clear that the craftsmen were subordinate to the artists. Pervasive social tensions arose, because in the end the autonomous artist was the center of attention, even at the Bauhaus. In the field of design mostly unica were produced during this phase, representing the first moves toward a product aesthetic.

The Consolidation Phase 1923–1928

The Bauhaus increasingly became a teaching and production facility for industrial prototypes, which aimed to meet both the realities of industrial manufacturing and the social needs of the general population. From our perspective today, the most successful Bauhaus workshop, apart from metalworking, was carpentry. Marcel Breuer, who had studied at the Bauhaus since 1920, took over the carpentry workshop as “young master” in 1925. In developing his tubular steel furniture, Breuer achieved a breakthrough: functional furniture capable of exploiting the opportunities offered by mass production. Probably inspired by the curved form of his bicycle handlebars, Breuer made a mental leap to the Thonet chairs. Combining the strength and stability of steel tubing with lightweight coverings (wickerwork, fabric, leather), he succeeded in creating a completely new category of seating furniture (Giedion 1948); the same principles were soon being applied to tables, cabinets, shelves, desks, beds, and combination furniture.

The aim of the design activities at the Bauhaus was to develop affordable products for the populace, while maintaining a high degree of functionality. During this second phase much theoretical and practical work was conducted on the concept of function, which always involved a social perspective in its aim to “govern the circumstances of life and labor” (Moholy-Nagy) and take “questions of mass demand” seriously. Function always meant a combination of two factors in design, marrying the conditions of industrial manufacturing (technology, construction methods, materials) with the social conditions, in the service of the needs of the broader population and the requirements of social planning.
THE BAUHAUS BUILDING in Dessau
Accordingly, during this second phase of the Bauhaus, undirected artistic experimentation retreated in favor of applied design tasks. To some extent as a result of assignments that gave rise to industrial commissions, the Bauhaus became a “university of design.” Standardization, series manufacturing, and mass production became the backbone of all Bauhaus activities. The principal force behind these developments was Swiss architect Hannes Meyer, who became head of the Department of Architecture in 1927 and set up a systematic, scientifically grounded architecture program.

The Phase of Disintegration 1928–1933
Hannes Meyer was appointed director of the Bauhaus in 1928. On his watch new subjects and workshops were introduced, including photography, sculpture, psychology, and several others. Meyer energetically promoted a social purpose for architecture and design. The designer should serve the people, he said, which meant providing adequate products to satisfy their basic needs, for example, in the field of housing. This meant giving up for good the original concept of an art academy. Many artists left the Bauhaus, among them Schlemmer, Klee, Moholy-Nagy. In 1930 Meyer, too, left the Bauhaus, emigrating to Moscow with twelve students to escape the political pressure in Germany.

Mies van der Rohe was named the new director, but in 1932 the Nazis closed the Bauhaus in Dessau. Mies attempted to keep it going as an independent institute in Berlin, but the Bauhaus disbanded just a few months after Adolf Hitler seized power in Berlin, on 20 July 1933 (Hahn 1985).

The Goals of the Bauhaus
The Bauhaus had two central aims:
- to achieve a new aesthetic synthesis by integrating all the artistic genres and craft trades under the primacy of architecture, and
- to achieve a social synthesis by aligning aesthetic production with the needs of the general population.

Both of these aspects became central categories of design activity over the course of the subsequent decades. Aside from its purely educational contributions, the Bauhaus was also a “school of life,” where
CRADLE, design: Peter Kehler (1922)
ME 105 CEILING LAMP, design: Marianne Brandt/Hans Przyrembel (1926)
FRUIT BOWL, design: Josef Albers (1923)
TABLE LAMP, design: Carl Jacob Jucker/Wilhelm Wagenfeld (1923/24)
DOOR HANDLE for the Bauhaus Building in Dessau, design: Walter Gropius (1929)
TEA MACHINE, design: Marianne Brandt (1928/30)
CHAIR WITH ARMRESTS, design: Mies van der Rohe (1927)
B 65 DESK, design: Marcel Breuer (1929/30)
TUBULAR STEEL CHAIR, design: Mart Stam (1928)
INVITATION to the “Wilhelm Wagenfeld” exhibition, Design Center Stuttgart, 1988
LIMOUSINE, design: Walter Gropius (1929/33), Adler-Automobilwerke
teachers and students practiced a shared constructivist philosophy of life (Wünsche 1989), and which, during the Weimar phase at least, resembled a “closed community,” as Moholy-Nagy put it. This common identity was certainly crucial in building the almost missionary zeal with which the Bauhaus idea was transported all over the world. Similar phenomena can also be found after World War II at the Ulm School of Design. The voluminous work by Fiedler and Feierabend (1999), quickly established as the second major standard work after the “Wingler,” does justice to these previously largely disregarded facets of the Bauhaus.

THE INFLUENCE OF THE BAUHAUS ON PRODUCT DESIGN CULTURE

Walter Gropius’s postulate, “art and technology – a new unity,” was aimed at producing new experts in industry who would be competent both in modern technology and in the corresponding language of form. Gropius thus laid the groundwork for the transformation in vocational practice that turned the traditional artisan craftsman into the modern industrial designer.

The methods of eidetic inquiry, functional analysis, and a nascent science of form were to be used to elucidate the objective conditions for design. In 1926 Gropius formulated this as follows: “A thing is determined by its nature. In order to design it so that it functions properly, whether it be a vessel, a chair, or a house, its nature must first be investigated, because it should serve its purpose perfectly, meaning that it fulfills its functions practically, is long-lasting, inexpensive, and attractive” (Eckstein 1985). The concept of “eidetic marks” (Fischer and Mikosch 1983) also stands in this tradition, denoting as it does that every product has typical marks, or visualizations of practical functions, that point to the specifics of a product class.

This social stance is particularly apparent in the work of Bauhaus student Wilhelm Wagenfeld, who was adamant that mass-produced goods should be both cheap and excellently designed and made. His designs for the Lausitz Glassworks and WMF (Württembergische Metallwarenfabrik) have become so widespread that they occupy an almost anonymous position in everyday culture, because Wagenfeld as a designer gave prominence to his products rather than his person (for his lifework see Manske and Scholz 1987).
It should, however, be pointed out that the Bauhaus designs had no influence on the mass culture of the 1930s. Purchasers of Bauhaus products came from intellectual circles, which were open to new design concepts. Nonetheless, looking back from today’s perspective, we can certainly speak of a “Bauhaus style” that was a formative influence in twentieth-century design (Bittner 2003).

BAUHAUS AND FURNITURE DESIGN

Design at the Bauhaus was largely shaped by a generation of young architects whose main interest was the functions of products and the surroundings of those who lived in buildings. In a radical break with the nineteenth century (the period that gave us the plush decor of the upper-middle-class home), designers turned their attention to technological questions. Fascination with new construction methods led to functionally reconceived “type furniture.” At this early stage the allure of technology was already giving rise to a symbolism of its own. Steel tubing in the apartment became a trademark of the intellectual avant-garde. However, the market potential of such furniture was not exploited properly until the 1960s, for example, by Cassina and other Italian furniture manufacturers.

THE INFLUENCE OF THE BAUHAUS ON DESIGN TRAINING

When political developments forced many Bauhaus students and teachers into emigration, the pioneering Bauhaus concepts were carried across the world and developed further in research, teaching, and practical application:

- 1926: Johannes Itten founds a private art school in Berlin.
- 1928: the “Budapest Bauhaus” (Műhely) is set up in Hungary with Sandor Bortnik as its head.
- 1933: Josef Albers goes to Black Mountain College in North Carolina, where he teaches until 1949.
- 1937: The New Bauhaus with Moholy-Nagy as its head is founded in Chicago.
- also in 1937: Walter Gropius is appointed head of the Department of Architecture at the Harvard Graduate School of Design. Marcel Breuer also teaches there until 1946.

In fact, our actions did not proceed from art, but rather from things and thus actually from people. Thus we equated artistic design with technical realization, albeit from another perspective.

WILHELM WAGENFELD, 1948
CARPETING BY "FRAUEN AM BAUHAUS" (women at Bauhaus)
CLASSIC, design: Gertrud Arndt,
Vorwerk Teppichwerke
COUCH AND CHAIRS, design: Peter Maly, COR
- 1938: Mies van der Rohe is appointed head of the Department of Architecture at the Armour Institute of Technology in Chicago, which joins with other institutes in 1940 to form the influential Illinois Institute of Technology.
- 1939: Moholy-Nagy founds the School of Design in Chicago, renamed the Institute of Design, with college status, in 1944.
- 1949: under Moholy-Nagy’s successor, Serge Chermayeff, the Institute of Design merges into the Illinois Institute of Technology and gains university status. Under Chermayeff special departments are set up for visual design, product design, architecture, and photography. Many design schools across the world subsequently adopt this same structure.
- 1950–1959: Albers teaches at Yale University in New Haven, Connecticut, where he prepares his famous investigation of color, Interaction of Colour (Albers 1963, 1977), which is still used in color courses, especially in foundation courses for designers.

THE ULM SCHOOL OF DESIGN

The most significant new institution to be founded after World War II was the Ulm School of Design. Just as the Bauhaus put its decisive stamp on the architecture, design, and art of the 1920s, the Ulm School of Design also exerted such manifold influences on the theory, practice, and teaching of design and visual communication that a direct comparison of the two institutions would seem legitimate. The Swiss Max Bill, who himself studied at the Bauhaus from 1927 to 1929, was involved in setting up the Ulm School of Design and was its rector until 1956. Former Bauhaus staff who taught as visiting lecturers in Ulm included Albers, Itten, and Walter Peterhans. The School’s curriculum, too, initially adhered closely to the Dessau Bauhaus model.

Continuity is also apparent in Walter Gropius’s inaugural speech of 1955. He spoke of the significant role of the artist in an advanced democracy, and rejected the charge that the Bauhaus had promoted a one-sided rationalism. In his work, Gropius said, he was searching for a new equilibrium between the practical and the aesthetic, psychological demands of the age. Gropius understood functionalism in
ULM SCHOOL OF DESIGN BUILDING (1967)
(Photos: Bürdek archive)
design to mean providing the products to satisfy the physical and psychological needs of the population. Gropius saw questions about the beauty of form, especially, as being psychological in nature. He believed that the task of a college was not only to educate the intellect by teaching the acquisition of knowledge, but also to educate the senses.

In the wake of a growing interest in its history, the Ulm School of Design has been the subject of increased attention since the 1980s. In 1982 the HfG-Synopse working party illustrated the events and developments at the School by means of documents arranged in a synchronous visual presentation (Roericht 1982, 1985). This presentation was used as the basis for an exhibition about the Ulm School of Design (for the documentation published at the same time, see Lindinger 1987). Several dissertations have been written from an art history perspective, including a quite controversial one by Hartmut Seeling (1985), one by Eva von Seckendorff (1989), and an extremely meticulous one by René Spitz (2001), who dealt in particular with the institutional processes and political and social context of the Ulm School of Design. Since autumn 2003 a traveling exhibition and an associated catalog entitled *ulm models – models after ulm* (Ulmer Museum and HfG-Archiv 2003) have been presented.

THE SIX DEVELOPMENT PHASES

We can identify six distinct phases in the history of the Ulm School of Design:

1947–1953

To commemorate her brother and sister, Hans and Sophie Scholl, who had been executed by the Nazis, Inge Scholl proposed setting up a foundation with the objective of starting a college where vocational skills and cultural creativity would be allied with political responsibility. On the initiative of John McCloy, the American High Commissioner for Germany, the Geschwister Scholl Foundation was set up as the institution responsible for the Ulm School of Design.

Inge Scholl, Otl Aicher, Max Bill, and Walter Zeischegg led the development work on the concept for the school, and in 1953 construction of the building, designed by Bill, began.
DOOR HANDLES at the Ulm School of Design,
design: Max Bill/Ernst Moeckl
(hfg ulm hommage 2003)
(Photos: Bürdek archive)
1953–1956
The first students at Ulm were taught in temporary accommodation by former Bauhaus teachers Helene Nonné-Schmidt, Walter Peterhans, Josef Albers, and Johannes Itten. The teaching represented a direct continuation of the Bauhaus tradition, although there were no painting or sculpture classes; in fact, there was no free or applied art at all. The first newly appointed lecturers had an artistic educational background, but the Ulm School of Design actually only had an instrumental interest in the knowledge of art, for instance, in its application in foundation course projects.

In 1954 Max Bill was appointed the first rector of the Ulm School of Design, and the official opening of the new building on the slopes of the Kuhberg followed on 1 and 2 October 1955. In his opening speech Bill set out the institution’s lofty ambitions: “Our goal is clear. All activities at the School are directed to participation in building a new culture, with the aim of creating a way of life concomitant with the technical age we live in. . . . Our culture today has been too deeply shaken for us to start building again, so to speak, at the top of the pyramid. We have to begin at the bottom by examining the foundations” (Spitz 2001).

Otl Aicher, Hans Gugelot, and Tomás Maldonado were appointed as the School’s first lecturers.

1956–1958
This phase was characterized by the inclusion of new scientific disciplines in the curriculum. The lecturers, Aicher, Maldonado, Gugelot, and Zeischegg in particular, pointed out the close relationships between design, science, and technology. Max Bill left the School in 1957 because he no longer agreed with the direction it was taking. This phase was also marked by the preparation of an educational model for the School, which Maldonado countersigned in 1958 with a clear statement: “As you can see we have spared no effort to put the work of the School on a precise footing” (Spitz 2001).

1958–1962
Disciplines such as ergonomics, mathematical techniques, economics, physics, politics, psychology, semiotics, sociology, and theory of science grew in importance in the curriculum. The Ulm School of Design thus stood clearly in the tradition of German rationalism, trying as it
did to demonstrate “scientific character,” in particular through the application of mathematical methods. At the same time, the selection of disciplines to be included in the curriculum was also heavily influenced by the choice of visiting lecturers willing to come at a particular time, and was therefore rarely characterized by continuity. Despite upholding its avant-garde, intellectual claims, the School ultimately proved unsuccessful in rigorous theoretical work. Hence, Michael Erlhoff’s claim that the last well-founded design concept was developed at the School, appears problematic to me, because what was discussed in Ulm – and was integrated into teaching and research – was a series of rather random theoretical fragments and chance discoveries (Bürdek 2003).

Walter Zeischegg, Horst Rittel, Herbert Lindinger, and Gui Bonsiepe were appointed as lecturers in the Product Design Department. During this time particular emphasis was placed on developing design methods; modular design and system design came to the fore in design projects.

1962–1966
During this phase equilibrium was achieved between theoretical and practical disciplines in the curriculum. Teaching itself was very strongly formalized and became a reference model for many other design schools throughout the world.

Increasingly, projects for industrial clients were handled by independent development groups (institutes), while at the same time industry’s interest in exploiting design for its own ends became ever clearer. German corporations were quick to recognize that the principles applied at the Ulm School of Design could be used to realize rational manufacturing concepts that were particularly well suited to the technologies of the time. From outside, the Ulm School of Design itself was no longer regarded as a university-level institution in terms of research and development, and as a result, using the justification of “no research, no funding,” the German government stopped financing the School (Spitz 2001).

1967–1968
During the final two years, attempts to preserve the School’s autonomy sparked a search for new ideas and institutional structures, which, however, never came to fruition. The demands of the state parliament of Baden-Württemberg for new concepts were not met,
not least because of internal disagreements among the staff and students, and as a result the School of Design closed its doors at the end of 1968 (Spitz 2001).

Quite apart from all the often-cited political reasons, the School also failed because after the mid-1960s it was unable to generate modern concepts and ideas. The critique of functionalism that arose at that time and the debate over ecological questions that took off a little later fell on deaf ears at the School. The institutes, in particular, had become so strongly commercialized through industrial projects that many lecturers could no longer be said to possess independence and critical detachment. Once the Ulm style had finally been established, it proved impossible to resist the temptation to reap the rewards in industry. These entanglements made it impossible to find solutions that would have satisfied the massive demands made by students at the same time: demands for work to be socially relevant and for colleges and universities to maintain academic independence.

The Institute for Environmental Planning

In 1969 Stuttgart University opened an Institute for Environmental Planning in the buildings of the Ulm School of Design. The intention was to continue the former School’s work while opening up its narrow definition of design. The Institute increasingly dedicated itself to social and political issues, which the students’ movement of 1967–1968 had brought to the awareness of designers (Klar 1968; Kuby 1969). Losing the autonomous status of an independent university meant that the Institute was heavily dependent on Stuttgart University, which shut it down in 1972. It should be mentioned, however, that a working party at the Institute in this period sketched out the groundwork for a reorientation of design theory (see p. 276).

The Departments of the Ulm School of Design

A brief examination of the School’s individual departments also shows where its work was focused.

Foundation Course

As at the Bauhaus, the foundation course was taken very seriously at Ulm. Its goal was to teach the general fundamentals of design, theoretical and scientific knowledge, and to introduce students to the
STUDENT ASSEMBLY at the Ulm School of Design
(Photos: Bürdek archive)
practical work of design (including model-making and techniques of representation). Here, too, the teaching method aimed to sensitize the faculties of perception through experimentation with the elementary tools of design (colors, forms, Gestalt laws, materials, surfaces). Initially strongly influenced by Bauhaus, over time the foundation course moved in the direction of a visual methodology with a precise mathematical and geometrical basis (Lindinger 1987).

The ultimate intention of the foundation course at Ulm, however, was to achieve intellectual discipline by training students in manual precision. Cartesian thought dominated scientific theory. Thinking was governed by the wish for rationality, for strict form and construction. Only the “exact” natural sciences were truly accepted as reference disciplines. Mathematical disciplines, especially, were investigated with respect to possible applications in design (Maldonado and Bonsiepe 1964), including:
- combinatorial analysis (for modular systems and problems of dimensional coordination),
- group theory (in the form of a theory of symmetry for constructing networks and grids),
- curve theory (for mathematical treatment of transitions and transformations),
- polyhedral geometry (for constructing bodies), and
- topology (for problems of order, continuity, and neighborhood).

Students were trained to carry out conscious, controlled design, and taught a way of thinking that mirrored the task definitions that they would later have to work through in the fields of product design, industrialized construction, or communication (Rübenach 1958–1959, 1987).

Architecture

The Department of Architecture concentrated on prefabricated construction methods, with training focusing on construction elements, connection techniques, production management, and modular design. These methods were to be applied primarily in order to create affordable accommodation for a large section of the population. In its approach to design, the Ulm School took up the ideas of Hannes Meyer at the Bauhaus, which also fitted seamlessly with the trend for prefabricated design in the construction industry at that time.

One recognizes how ingenious a thing can be – and how banal art.

— ANGELIKA BAUER, 2004
Film

A separate Film Department was set up in 1961. As well as learning the required practical and technical skills, students also developed new experimental forms of film. The lecturers were Edgar Reitz, Alexander Kluge, and Christian Straub. The Film Department set itself up as the independent Institute of Film Design in October 1967.

Information Studies

The aim of this department was to train students for new professions in the press, film, radio, and television. The three most influential lecturers were Max Bense, Abraham A. Moles, and Gerd Kalow. The Information Studies Department also attempted to apply information theory to other areas of design.

Product Design

This department’s interests were centered on developing and designing industrially mass-produced products to be used in everyday contexts, offices, and factories. Special emphasis was placed on a design method that takes into consideration all the factors that determine a product: functional, cultural, technological, and economic.

Design projects focused less on individual products than on questions of product systems, through which a unified image could be achieved: for example, a corporate design for a business. Appliances, machines, and instruments were the main product sectors. Objects that possessed an artistic or craft character were more or less taboo, nor was the design of prestige and luxury items part of the task definition of the Product Design Department.

Visual Communication

The problems of mass communication were the main interest of this department. Design projects here covered the whole spectrum from typography, photography, packaging systems, and exhibition systems right through to technical communications, designing displays, and developing sign systems.
THE EDUCATIONAL IMPACT OF THE ULM SCHOOL OF DESIGN

Like the Bauhaus, the Ulm School of Design continued to be exceptionally influential after its closure, despite its relatively short existence of just fifteen years. The School’s graduates also benefited from a fortunate circumstance. Public-sector employers (for instance in Germany) prefer job applicants to hold a university degree. Until well into the 1960s only graduates from Ulm were able to meet this condition in the field of design. With their internalized rigid Cartesian thought they guaranteed that “deviating tendencies” were nipped in the bud or prevented from germinating in the first place. This also explains the very clear demarcation between design on the one hand, and arts and crafts on the other, during that period. In the end this provoked the postmodernist countercurrent of the 1980s, which attracted a great deal of attention to design but remained ultimately counterproductive, because little progress was made in the fundamental science of the discipline. In fact, today, at those universities where both free and applied arts are taught, we find that the much-trumpeted interdisciplinary dialog of the subjects fails in the face of an insistence on status by the supposedly “free” and apparently “independent” artists, among whom ways of thinking that date right back to the independent art academies of the nineteenth century are still very widespread. So it appears that design schools are especially successful when they demonstrate active, broad involvement in cultural contexts, which does not necessarily mean only the free arts, but can also include architecture, stage design, production and event design, film, photography, literature, fashion, music, pop culture, urban and regional planning, and theater.

The field of design methodology, in particular, would be unimaginable without the work of the Ulm School of Design. Dealing systematically with problems, using methods of analysis and synthesis, and justifying and selecting design alternatives, are today all part of the common repertoire of the design profession. Ulm was the first school of design to place itself absolutely and intentionally in the intellectual tradition of modernism.

Just as the members of the Bauhaus saw themselves not only as artists, architects, or designers, but also as a residential and intellectual community (Fiedler and Feierabend 1999), the “Ulmer” also saw themselves as a group with a similar character. Although a total of
PLYWOOD CHAIR, design: Wilhelm Ritz (1958/59), Wilkhahn
STACKABLE ASHTRAYS, design: Walter Zeischegg (1967), Helit
TC 100 STACKABLE DISHES, design: Hans Roericht (1958/59), Thomas/Rosenthal
AUTONOVA FAM, design: Fritz B. Busch, Michael Conrad, Pio Manzù (1965)
DENTAL UNIT, design: Peter Beck, Peter Emmer, Dieter Reich (1961/62)
ANIMAL BUILDING BLOCKS, design: Hans von Klier (1958)
CAROUSEL S SLIDE PROJECTOR, design: Hans Gugelot (1963), Kodak
STREETLAMP, design: Peter Hofmeister, Thomas Mentzel, Werner Zemp (1965/66)
ULMER STOOLS, design: Max Bill, Hans Gugelot, Paul Hildinger (1954)
640 students studied there, only 215 left the School with a degree, so it is certainly correct to speak of a “Mayflower effect” (Bürdek 1980). Today, having studied at Ulm has taken on the same kind of importance for a designer as being able to trace one’s ancestry back to the Mayflower does for Americans.

A rough overview shows that about half the Ulm graduates work in design agencies or corporate design departments. Many product designers went to Italy, while the architects generally settled in Switzerland. The other half work, or have worked, in higher education. It is down to this second group and their participation in the curriculum reform of the 1970s (which produced new university regulations and examination rules) that the Ulm ideas have been incorporated into the respective curricula.

It is, above all, abroad that the Ulm School of Design has made its ideas felt. In a migration that echoes the Bauhaus exodus after 1933 – although the reasons are very different, of course – many lecturers and students from Ulm went out across the world in search of new challenges:

- In the 1960s designers from Ulm played a crucial role in setting up the Escola Superior de Desenho (ESDI) in Rio de Janeiro.
- At the beginning of the 1970s an Institute of Environmental Design was founded in Paris, although it only existed for a few years.
- At the same time in Chile attempts were made to develop products for basic needs. The design concepts were very strongly influenced by Ulm (Bonsiepe 1974).
- The influence of Ulm is apparent in India at both the National Institute of Design in Ahmedabad and the Industrial Design Center in Bombay.
- The same applies to the Oficina Nacional de Diseño Industrial (ONDI) in Cuba, the postgraduate course for designers at the Universidad Autónoma Metropolitana (UAM) in Mexico City, and the former Laboratorio Associado in Florianopolis, Brazil.

THE INFLUENCE OF THE ULM SCHOOL OF DESIGN ON PRODUCT CULTURE

The Ulm design principles were applied quickly in an exemplary industrial context in the 1960s through the School’s cooperation with
the Braun brothers. Braun became the fulcrum of a movement that gained worldwide attention as “good design,” which ideally matched the manufacturing possibilities of industry while also gaining rapid market acceptance when it was applied to consumer and capital goods. Over a span of two decades, good design, el buen diseño, bel design, and gute Form have become more or less international trademarks of German design. The concept met its first serious challenge in the 1970s (critique of functionalism), and an even stronger one in the early 1980s (postmodernism). Nonetheless, many German businesses have applied its principles with considerable success.

THE EXAMPLE OF BRAUN

No other company has had such a decisive influence on the development of design in Germany as Braun in Kronberg near Frankfurt. An unbroken tradition of modernism guides Braun’s business and design policies to this day. For many decades Braun was a model for many other companies, and not only in Germany.

THE BEGINNINGS

After World War II Max Braun started rebuilding his company, in which his sons Erwin and Artur Braun took on commercial and technical responsibilities in 1950. Initially the company produced electric razors, radios, kitchen appliances, and electronic flash equipment.

At the beginning of the 1950s Fritz Eichler, who was responsible for the company’s design policies, initiated a collaboration with the Ulm School of Design to develop a new product line. Hans Gugelot, then a lecturer at the Ulm School, had a decisive part in this work. In 1955 Dieter Rams — who incidentally studied not only at Ulm but also at the School of Arts and Crafts in Wiesbaden — started work as an architect and interior designer at Braun, where he was already taking on his first product design tasks by 1956 (Burkhardt and Franksen 1980). Hans Gugelot and Herbert Hirche worked with Rams to create the first substantive basis for Braun’s corporate image.
HIGH-FIDELITY SOUND SYSTEM, t+a akustik
606 SHELVES, design: Dieter Rams, sd+
THE PRINCIPLES

The implementation of functionalist principles is extremely clear in Braun’s products (Industry Forum Design Hannover 1990). Their characteristic features include:

- high fitness for use,
- fulfillment of ergonomic and physiological requirements,
- high functional order of individual products,
- painstaking design down to the smallest detail,
- harmonious design, achieved with simple means,
- intelligent design, based on innovative technology and the needs and behavior of the user.

Firmly in the tradition of classical modernism, Dieter Rams describes his work as a designer as “Less design is more design,” a direct reference to the “Less is more” of Mies van der Rohe, whose affirmation of the International Style was so influential for architecture after World War II. Although Robert Venturi had already aptly parodied Mies with “Less is bore” in 1966, that discussion had almost no influence on Rams.

In the example of Braun, it is clear how the unity of technological concept, controlled product design, and strictly ordered means of communication (as in letterheads, brochures, catalogs) produces an overall visual appearance for the company, one that is exemplary in its stringency. This kind of coordination of all design elements is known as a business’s corporate design.

BRAUN AFTER DIETER RAMS

The ramifications of the postmodernist design of the 1980s were not felt in Braun’s product culture until the second half of the 1990s. The great success of firms like Alessi, Authentics, Koziol, and Philips, who flooded department stores and boutiques with product lines adorned with the style elements of a new pop culture, did not go unnoticed at a corporation like Braun. As head of the Design Department until 1997, Dieter Rams had been one of the most tenacious advocates of German functionalism (Klatt and Jatzke-Wigand 2002), so when he left in 1997 his decisive – but also rigid – influence on Braun’s product designs came to an end. The growing influence of marketing strate-
PRODUCTS BY BRAUN (1950-1970)
(Photograph: Galerie Ulrich Fiedler, Cologne)
CURRENT PRODUCTS BY BRAUN
(Photograph: Wolfgang Seibt)
gies increasingly based on global design led to a loss of uniqueness in many product sectors too (Braun Design 2002).

FROM GOOD DESIGN TO THE ART OF DESIGN

IT ALL BEGAN WITH SULLIVAN

For a long time the commonly used definition of function was based on a glaring misunderstanding of the theses of American architect Louis H. Sullivan (1856–1924), who was actually interested not only in the practical function of buildings, but also in the semiotic dimensions of the objects: “All things in nature have a shape, that is to say, a form, an outward semblance, that tells us what they are, that distinguishes them from ourselves and from each other.” (Sullivan 1896). What Sullivan wanted was for life and form to correspond and harmonize completely but that has hardly been reflected in “good design” as practiced in the twentieth century.

Adolf Loos, author of Ornament und Verbrechen (Ornament and Crime, 1908), initiated the development of rational design in Europe, which spread largely through the rapid expansion of industrial methods of production. Loos failed, however, to recognize that the everyday needs of the population were complex and generally shaped by traditional aesthetic models. Even before the work of the Bauhaus, Ernst Bloch attempted dialectically to at least keep the rigid dictum of ornamentlessness a little open.

Loos’s ideas had their first heyday during the Bauhaus period. The design approach and methodology developed there was understood as overcoming styles, although in fact, their strict application gave rise to a new style, which became the symbol of a small intellectual and progressive stratum of the population, who demonstrated it in their houses and apartments through tubular steel furniture and spartan bookcases.

Functionalism’s real boom came after World War II in the Federal Republic of Germany, and a few years later in East Germany, too. As mass production started up again, it was seen as a suitable tool for standardizing and rationalizing manufacturing. That applied to both design and architecture. This concept was developed systematically and refined – in theory and practice – during the 1960s, especially at the Ulm School of Design.

Obstetric forceps have to be smooth, sugar tongs not at all.

__ERNST BLOCH, 1918__
KITCHEN STOVE, Dessauer
POCKET BINOCULARS, Minox
MP VIEWFINDER CAMERA, Leica
THE RADICAL SIXTIES

The first signs of crisis appeared in certain European countries in the mid-1960s. The lengthy economic upturn that had followed World War II was almost at an end. The long Vietnam War gave rise to student protest movements in the United States, which were soon taken up in Europe in the Prague Spring, the May uprising in Paris, and demonstrations in Berlin and Frankfurt am Main. Their shared foundation was their critique of society, which is subsumed under the term “New Left” in Western Europe. In Germany this movement took its fundamental arguments from the theoretical works of the Frankfurt School: Theodor W. Adorno, Max Horkheimer, Herbert Marcuse, Jürgen Habermas, and others.

The work of Wolfgang Fritz Haug proved to be particularly important for design. His *Critique of Commodity Aesthetics* investigated, from a marxist perspective, the dual nature of commodities (products), which can be defined by their use value and exchange value. In several examples, Haug demonstrated how design functions as a means of increasing exchange value or, in other words, how aesthetic design cannot increase the use value of objects (see p. 276).

The critique of functionalism had a particularly incendiary effect on architecture and urban planning. The International Style, which had been demonstrated very clearly in the Stuttgart Weissenhof project (Hitchcock and Johnson 1966), reappeared in a perverted form in the satellite towns around many conurbations. In Germany these included Märkisches Viertel in Berlin, Nordweststadt in Frankfurt, Neu-Perlach near Munich, and the Marzahn district of East Berlin. Later, this type of mass-produced environment was even accused of representing repression and violation of the human psyche (Gorsen, 1979).

The work of Alexander Mitscherlich (1965), Theodor W. Adorno’s 1965 lecture “Functionalism Today,” and the contributions of Heide Berndt, Alfred Lorenzer, and Klaus Horn (1968) were especially important milestones in the scientific criticism of functionalism.

Criticism of functionalism was much slower to surface within design. Abraham A. Moles (1968) saw instead the problems of an affluent society rearing their heads, and drew from the crisis of functionalism the conclusion that functionalism had to be interpreted even more rigidly. His Magna Carta of functionalism produced an outlook on life based on frugality and the rational use of existing means for clearly defined purposes.
Architect Werner Nehls responded with polemical irony, shocking the design scene with his opinion that the rational and functionalist understanding of design was completely outdated. Designers were producing wrong design, Nehls said, to exactly the extent that they were trapped in the ideas of the Bauhaus and the Ulm School of Design. Right angles, straight lines, geometric or objective forms, open forms, lack of contrast, and colorlessness all had to go. “Furthermore, the planar-optical approach to design must be done away with, the cube, the design of the masculine. Today’s design comes from a feminine stance, the emotional is emphasized. Feminine, irrational design prefers organic forms, contrasting colors, random attributes.” (Nehls 1968) This understanding of design was practiced to excess by Luigi Colani (Dunas 1993). He, in particular, exploited in exemplary fashion the freedoms offered by inexpensive new plastics and expressed them in design.

Distinguishing between the functionalism of the Bauhaus and of the Ulm School of Design, Gerda Müller-Krauspe (1969) advocated an “expanded functionalism,” defined as an interpretation of design whose proponents attempt to discover as many product-determining factors as possible and include them in the design process. The role of the designer as coordinator was already featured in theory and practice at the Ulm School of Design.

THE FIRST ECOLOGICAL APPROACHES

At the beginning of the 1970s The Limits to Growth burst into public consciousness in the form of a report for the Club of Rome on the state of humanity (Meadows 1972). The authors stated clearly that continued exponential growth would cause industrialized nations to lose the basis of their existence within the foreseeable future. Rapid depletion of natural resources, rising population densities, and increasing pollution would lead to destabilization or a complete collapse of industrialized societies. Ecological demands were made for design, too, but they were largely disregarded.

Responding to such considerations, a working party entitled des-in at the Offenbach School of Design developed the first attempts at “recycling design” in 1974 for a competition run by the Internationales Design Zentrum Berlin (IDZ). This early model, which involved the
group designing, producing, and marketing its own products, was doomed to failure by the group’s lack of business acumen. Nonetheless, des-in was probably the first group in the field of design to attempt to connect new theoretical concepts with an alternative design practice.

THE ECLECTICIST COUNTERMOVEMENT

In design, however, a movement in the opposite direction was to gain the upper hand. The influence of the eclecticist movement of postmodernism (or neomodernism), which had formed principally in Italy in the Memphis group (see p. 137), became increasingly noticeable in Germany. By 1983 Rolf-Peter Baacke, Uta Brandes, and Michael Erlhoff were already proclaiming the “new shine of things,” in a book which gave a huge boost to design’s change of course – in the sense of overcoming the doctrine of functionalism. Not only in Italy, and especially in Germany, there were a large number of designers who worked outside the framework of functionalist design ideology.

The architect, sculptor, and designer Stefan Wewerka designed mutated chairs that could not be sat on (Fischer, Gleininger, and Wewerka 1998). His one-legged cantilever chair takes up the tradition of the Bauhaus classics and pokes fun at them at the same time. In fact, Tecta, itself a manufacturer of furniture classics, saw Wewerka’s chair as an important addition to its product range (Wewerka 1983).

In 1982, the Hamburg Museum of Arts and Crafts showed the first cross-section of new German design. Progressive furniture shops and galleries (for example, Möbel Perdu and Form und Funktion in Hamburg, Strand in Munich, and Quartett in Hannover) offered the designers – who caused a furor like the Neue Wilden of 1980s painting – a platform on which to present their objects (Hauffe 1994).

The young designers worked in groups like Bellefast in Berlin, Kunstflug in Düsseldorf, and Pentagon in Cologne. Solo designers such as Jan Roth, Stefan Blum, Michael Feith, Wolfgang Flatz, Jörg Ratzlaff, Stiletto, and Thomas Wendtland experimented with materials, forms, and colors, which they combined apparently at random. Discarded items found in refuse were mixed together with industrial, half-finished (or semi-manufactured) products (Albus and Borngräber 1992).

In the process, designers intentionally adopted artistic working methods, but they were interested in discovering new qualities and
expression in things rather than in founding some kind of elevated do-
it-yourself movement. The separation of art and kitsch was dissolved
too, and shops, boutiques, and galleries were created, as well as inte-
riors for cafés and restaurants. The climax and swan song of the new
German design came in the summer of 1986 in the Düsseldorf exhibi-
tion Gefühlscollagen – Wohnen von Sinnen (Feeling Collages – Living
Madness) (Albus et al. 1986).

DESIGN ON THE THRONE OF ART

After design had finally thrown off its functional shackles in the ap-
parent radicalism of the 1980s, it was only a matter of time before it
would finally metamorphose into apparently pure art. The parallels
here are obvious. During the 1980s art had largely subscribed to Jean
Baudrillard’s theory of simulation (1985), presenting itself as the art of
spectacle and façade. This was demonstrated impressively in the
summer of 1987 at the documenta 8 in Kassel. There, design was
practically seated on art’s throne, where, as Michael Erlhoff (1987) in-
sisted, it neither belonged nor wanted to be.

As well as a number of architects, the design section of docu-
menta 8 had invited about fifteen designers to present objects and
environments, including the Spaniards Javier Mariscal and Oscar
Tusquet Blanca, the Italians Lapo Binazzi, Paolo Deganello, Guglielmo
Renzi, Denis Santachiara, and Ettore Sottsass, London-based Ron
Arad, the Germans Andreas Brandolini, Florian Borkenhagen, and the
Pentagon group. The displayed objects were largely unica and were
suited to be neither prototypes nor models for any kind of series pro-
duction whatsoever. Whether modernism, postmodernism, or post-
postmodernism modernism, the displayed designs fitted perfectly into
the new obscurity of the 1980s.

FROM DESIGN TO ART AND BACK AGAIN?

It would therefore be an obvious step to take a closer look at the
transitions from art to design and vice versa. For more than a century
the separations of art from craft, and design from art and craft, were
clearly defined. However, just as designers had entered the territory
of art in the 1980s, so had many artists long beforehand dedicated

Design clings to art like a
child to its mother; a sixty-
year-old child that does not
want to accept that it has
long come of age.

WALTER GRASSKAMP, 1991

The true artists of our time
are the industrial designers.

GAETANO PESCE, 1988
DESIGNWERKSTATT BERLIN (1988)

MEDIA COMPONENTS STAND, design: Joachim B. Stanitzek

COMPUTER DESK FOR WAITING AREAS, design: Gabriel Komreich

(Photos: Idris Kolodziej)
GEFÜHLSCOLLAGEN – WOHGEN VON SINNEN

EXHIBITION (“Feeling Collages – Living Madness”), Düsseldorf 1986

(Photo: Bürdek archive)
themselves to working on utility objects. Furniture and household objects were particularly popular objects for artistic reflection and production: Gerrit T. Rietveld’s chairs, Constantin Brancusi’s *Table of Silence*, Marcel Duchamps’s ready-mades, René Magritte’s surrealist objects, Salvador Dalí’s *Mae West sofa*, Meret Oppenheim’s *Table with Bird’s Feet*, Allen Jones’s *Green Table*, the installations of Kienholz and Segal. Claes Oldenburg and David Hockney, Timm Ulrichs, Wolf Vostell, Günther Uecker, Daniel Spoerri, Joseph Beuys, Richard Artschwager, Mario Merz, Franz Erhard Walther, Donald Judd, and, currently, Tobias Rehberger, as well as many others, have worked on utility objects. However, they were not interested in reconciling with design, but rather in alienating the products, calling the objects into question in paradoxical transformations, paraphrases, breaks, and fragments. “Furniture by artists contains the possibility of use, but that is not its primary intention. Its quality depends not on the degree of comfort, the space offered by shelves, or the ergonomics of the form” (Bochynek 1989). Franz Erhard Walther, one of the afore-mentioned artists, who also works in the field of objects, was once asked what he could learn from design. His simple reply was: “Nothing.”

Here, however, a sea change took place during the 1990s. Design became a cultural flagship discipline that operated holistically, and now has more influence on art than vice versa. In fact, transdisciplinary concepts like the Prada Shop in New York (design: Rem Kolhaas) or the one in Tokyo (design: Herzog & de Meuron), often appear to be style-formative (Prada Aoyama Tokyo 2003).
WEANER BLUT CHANDELIER, design:
Volker Albus (1987)

KUNSTFLUG COUNTRY CHAIR, design:
Harald Hullmann (1983)

SOLID CHAIR, design: Heinz H. Landes (1986)
CHAIR/CHAIR, design: Richard Artschwager,
Vitra Edition (Photo: Vitra)
INTERIOR DESIGN of the optician’s shop of
Markus Nicolai, Frankfurt am Main, design:
Tobias Rehberger
general view/detail
DESIGN AND HISTORY

VW'S NEW BEETLE